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1. Introduction

1. 1. Objective of the Study 

With regard to global warning of greenhouse gases, the

microgrids (MGs) can be considered for future electric

power systems consisting of small-scale power units, en-

ergy storage systems and loads [1]. In other words, MGs

provide the appropriate grounds for high-penetration of

renewable energies and distributed energy resources

(DER) [2]. Noted that the MG is essentially a nonlinear

small-scale power system and undergo a wide range of

transient conditions will face some stability problems.

Therefore, sufficient damping of frequency oscillations is

important in MG [3]. 

1. 2. Literature Review

In the last two decades many studies have been conducted

on the MGs [3-6]. In some of them the classical con-

trollers were employed to enhance the frequency oscilla-

tions in MGs [4-5]. It is clear that a fixed controller based

on the classical theories is not suitable for frequency con-

trol of microgrid. Considering the MG frequency control

problem, the conventional control strategies take the in-

tegral of the area control error as the control signal. An

integral controller can achieve a zero steady state devia-

tion; however, it exhibits poor dynamic performance [6].

To cope with this aim, many researchers presented the

PID-type fuzzy controller designing and its derivations

[7-8]. Compared to the conventional strategies, fuzzy

logic controller (FLC) provides much better results; how-

ever, it requires fine-tuning and hard efforts to achieve ef-

fective performance to damp out the frequency

fluctuations. In Ref. [9], a robust fuzzy-PID control sys-

tem established by incorporating an optimal fuzzy reason-

ing into a well-developed PID-type FLC. Although, this

type of controller is more effective than the classical con-

trollers, the well optimized fuzzy controller can be re-

sulted in more stability. Therefore, optimization algorithm

is certainly the first option in this case to reduce fuzzy

system effort and find better fuzzy controller [10-12]. 

In order to control isolated MG, some researchers have

used droop control strategies based on active power and

frequency (p-f) curve derived from distributed generation

(DG) converters. In Ref. [13], a droop control strategy

was suggested for DG resources to control the MG fre-

quency. Moahmadi et al. [14] presented a novel method
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based on droop control strategy of photovoltaic and bat-

tery converters to control the MG frequency. This strategy

was evaluated by some virtual MGs and the results re-

vealed an acceptable performance with respect to the MG

frequency control problems. In Ref. [15], the torque and

frequency droop control strategies are used for a doubly-

fed induction generator (DFIG). Yuen et al. [16] also

stated the practical aspects of providing frequency control

reserves (FCRs) and the potential economic profitability

of participating in FCR markets based on a setup of mul-

tiple MGs. In addition, Ref. [17] was dedicated to a new

energy management system (EMS) model to improve the

security of a MG in a cost-effective manner. In Refs. s[18,

19], the role of a cascaded H-bridge (CHB) multilevel

converter in controlling the frequency was examined. In

Ref. [20], investigations were carried out on the coordi-

nated vehicle-to-grid (V2G) control and frequency con-

troller for robust frequency control in a smart grid with

large penetration of renewable energy sources (RES).

Here, the battery state-of-charge (SOC) was controlled by

the optimized SOC deviation. Li et al. [21] focused on the

feasibility of electrolyzer and fuel-cell hybrid system con-

trol to secure a real power balance and increase the oper-

ational capability of the load frequency control model. In

Ref. [22], a virtual synchronous generator control method

was reported to use the same control method in stand-

alone and grid-connected operations. Authors in Ref. [23]

proposed a battery energy storage system to maintain the

frequency control process within MGs with large pene-

tration of RES. In this study, it was concluded that the

final solution improves the system’s stability and security

of supply. Shafiee et al. [24] suggested a new method to

consider the secondary controls in the droop-controlled

MGs.

1. 3. Motivation and contribution

In this paper an adaptive fuzzy P-PID controller is pro-

posed for frequency control of MG. As the optimizing of

the proposed fuzzy controller is very important to achieve

the desired level of system performance, a modified grav-

itational search algorithm (GSA) is used to optimize fuzzy

P-PID structure. Because, the GSA is a well-known and

successful algorithm with flexible structure [25-27]. In

order to resolve its shortcomings to obtain the global op-

timum solution and ensure the solutions not being trapped

in local optima when system has a highly epistatic objec-

tive function and number of to be optimized variables is

large, a new modified multi objective GSA-based CLS

operator, called the CGSA, is investigated to optimize the

parameters of the proposed fuzzy controller. The proposed

fuzzy P-PID model is a flexible controller with simple

configuration that is easy to implementation. As results,

the main contributions of this paper can be summarized

as follows:

i) Suggestion a fuzzy P-PID controller to improve fre-

quency fluctuation of a MG

ii) Presenting a modified gravitational search algo-

rithm based on the chaos theory to optimize the

proposed fuzzy controller parameters.

iii) Considering the nonlinear components and inherent

uncertainties of the MGs in synthesis procedure.

iv) Analyzing the MG system equipped with the pro-

posed fuzzy controller under sever operating con-

ditions and power generation uncertainties.

1. 4. Outline of this paper

The rest outline of this paper is structured as follows. Sec-

tion 2 illustrates the proposed MG and fuzzy P-PID con-

troller structure. Section 3 introduces the multi objective

CGSA algorithm and section 4 shows the consistency of

two previous sections with respect to the frequency sta-

bility. Section 5 describes several loading conditions to

demonstrate the performance of the proposed fuzzy P-PID

controller in a MG. Finally, the paper is concluded in Sec-

tion 6.

2. The proposed power system model

2. 1. Microgrid configuration

The real configuration of the studied MG is shown in Fig.

1 and the block diagram of this system is shown in Fig. 2

[1]. As shown in Fig. 1, MG is an interconnection of do-

mestic distributed loads and low voltage distributed en-

ergy sources, such as microturbines, wind turbines, PVs,

storage devices, diesel generator, and electrolyzer system.

It consists of a group of radial feeders as a part of a dis-

tribution system. The domestic load can be divided to sen-

sitive/critical and nonsensitive/noncritical loads via

separate feeders. The sensitive loads must be always sup-

plied by one or more microsources, while the nonsensitive

loads may be shut down in case of contingency, or a seri-

ous disturbance. Each unit’s feeder has a circuit breaker

and a power flow controller commanded by the central

controller or energy manager. The circuit breaker is used

to disconnect the correspondent feeder (and associated

unit) to avoid the impacts of sever disturbances through

the MG. The ac MG can be connected to the distribution

system by a point of common coupling (PCC) via a static

switch (SS). The static switch is capable to island the MG

for maintenance purposes or when faults or a contingency

is occurred. 

For the feeders with sensitive loads, local power supply,

such as diesel generators or energy capacitor systems

(ECSs) with enough energy saving capacity are needed to

avoid interruption of electrical supply. An MG central

controller (MGCC) facilitates a high level management

of the MG operation by means of technical and econom-

ical functions. The microsource controllers (MCs) control

the microsources and the energy storage systems. Finally,

the controllable loads are controlled by load controllers

(LC). The microsources and storage devices use power
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electronic circuits to connect to the ac MG. Usually, these

interfaces depending to the type of unit are ac/ac, dc/ac,

and ac/dc/ac power electronic converters/inverters. As the

MG elements are mainly power-electronically interfaced,

the MG control depends on the inverter control. For in-

creasing reliability in the conventional power systems, the

MG systems must be able to have proper performance in

both connected and disconnected modes. In connected

mode, the main grid is responsible for controlling and

maintaining power system in desired conditions and, the

MG systems act as real/reactive power injectors. But in

disconnected mode, the MG is responsible for maintain-

ing the local loads and keeping the frequency and voltage

indices at specified nominal values. All needed data for

the MG is given Appendix A [28].

In the simulation, the nonlinear model (Fig. 3) with ±0.1

saturation values is replaced with the linear model of tur-

bine ΔPVki/ΔPTki represented in Fig, 2 to take the gen-

eration rate constraint (GRC), i.e. the practical limit on

the rate of change in the generating power, into account.

Fig. 1. The Proposed microgrid containing different types of

power plants

Fig. 2. Block diagram of the microgrid system

Fig. 3. Nonlinear turbine model with GRC

Figure 4 shows the structure of the governor concerning

the Governor Dead-Band (GDB). 

Fig. 4. A nonlinear model of governor with GDB

Note that these types of power plants have inherent un-

certainties or nonlinear pattern; however, to the best

knowledge of the researcher, few studies have examined

this issue. This paper presents a modified GSA algorithm

to design a P-PID fuzzy controller for load frequency con-

trol considering GDB, GRC and RES system uncertain-

ties. This model can be considered as real-time potential

of the studied MG. 

2. 2. Adaptive Fuzzy P-PID controller

The graphical view of the proposed adaptive fuzzy P-PID

damping controller with a global signal Δf is shown in

Fig. 5. The membership functions are used to specify a

set of rules, called the rule base which developed based

on the optimization procedure. Rules are developed based

on two inputs and three linguistic terms. In an inference

model, all the rules are compared to the inputs to decide

which rules are relevant in the current condition. After the

corresponding process, the necessary rules are extracted

and the controlled output is specified for the different

input conditions. The de-fuzzification mechanism pro-

duces the final crisp output of FLC with regard to the

fuzzified input. In Fig. 5, the tracking Δf is the input of

the fuzzy inference system. The membership functions for

Δf and , and the output kfuzzy are of the conventional tri-

angular kind. In practice, most of the physical systems

have inherent tractable characteristics such as high-order

and nonlinearity. Therefore, the PID controllers are added

to meet the performance demand and multi objective

CGSA method is used to optimize the fuzzy P-PID pa-

rameter. In other words, the proposed controller consists

of the fuzzy P and the conventional PID with low-pass fil-

ter. The component fuzzy P tend to make a system faster.

The derivative part of PID is used to reduce the rapid
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changes and overshoots of the control inputs caused by

practical constraints. To deal with the steady-state error

and to reject disturbances in the control system, the inte-

gral part has been used. The parallel fuzzy P +PID control

action can be obtained by algebraically simultaneous sum-

ming up the fuzzy P control and PID control actions. In

the fuzzy P-PID model, the control effort can be deter-

mined by:

(1)

Fig. 5. Block diagram of the proposed fuzzy P-PID controller

of the interconnected microgrid

On the other hand, real-world power industry is too con-

servative to open the well-known PID control loop and

replace by a new control technology. In response to this

challenge, in the present paper, the PID controller is re-

mained, and the MGSA-based fuzzy logic is used for on-

line optimal tuning of its parameters. Therefore, this

control configuration provides a smooth performance in

start-up and transient circumstances and it could be more

acceptable for the real-time MG application. 

3. Multi objective chaotic gravitational search algo-

rithm

3.1. Standard GSA 

In this section, the standard (single-objective) GSA is

briefly discussed. In order to get more details, refer to Ref.

[25]. To describe the original GSA, consider a vector with

s agents (  is ith mass in the dth dimension) and the posi-

tion of ith mass is calculated by:

(2)

Then, mass of ith agent is calculated as follows:

(3)

where, Mi(t) and qi(t) are the mass value of the ith agent

at time t and the gravitational masse, respectively. The qi

(t) can be calculated by:

(4)

where, fiti(t), worst(t) and best(t) are the fitness value of

the ith agent at time t, worst and best fitness, one gets:

(5)

To calculate the acceleration of the agent i, aid(t), total

forces Fid(t) from a set of heavier masses should be ob-

tained based on the gravity law as follows: 

(6)

Then, the next velocity of the agent and its position is

computed as:

(7)

(8)

where, randi and randj are two uniformly distributed ran-

dom numbers in the interval [0, 1], Rij(t) is the Euclidean

distance between two agents i and j, Rij(t)=||Xi(t), Xj(t)||2,

ε is a small value, kbest is the set of first K agents with

the best fitness value and biggest mass as a function of

time with the initial value K0 at the beginning which is

decreased with time. Here, K0 is set to the total number

of agent’s s and is linearly reduced to 1. G denotes the
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gravitational constant by G0, and can be updated by:

(9)

The pseudo code of the standard GSA is shown in Fig. 6.

1. Search space identification, t=0;

2. Randomized initialization Xi(t)

For i=1,2,…,N;

3. Fitness evaluation of agents;

4. Update G(t), best (t), worst(t) and Mi(t)

For i=1,2,…,N;

5. calculation of acceleration and velocity;

6. Updating agent’s position to yield Xi(t+1)

For i=1,2,…,N; t=t+1;

7. Repeat steps 3 to 7 until the stopping criterion is

reached.

Fig. 6. Pseudo code of the standard GSA

3.2. Chaotic GSA

To enhance the algorithm search ability, the chaos theory

is employed. If hasty convergence happens, definitely,

there is need to an alternative operator to recover the al-

gorithm search. Hereby, the proposed CGSA combines

the standard GSA with CLS. Assume that our array of sen-

sors controls the current Cji+1 that is formulated based

on forcing the pendulum, by rewriting it from cos(t) to a

new form as follows:

(10)

where, gkbest refer to the best optimal value in iteration

k and   controls the local search ability. Thus, the proposed

CLS can be stepped as follows:

Step 1: Generate an initial random chaos population as:

(11)

where the chaos variable can be generate as follows:

(12)

Step 2: Determine the chaotic variables

(13)

where Nchaos is the number of individuals for CLS.

CxiNg is the ith chaotic variable and the Rand() generate

a random value in (0,1). 

Step 3: Map the decision variables

Step 4: Convert the chaotic variables into decision vari-

ables

Step 5: Assess new solution based on the decision vari-

ables

3. 3. Non-dominated Sort (NDS)

The NDS method is employed to build the Pareto ranks

dividing the solutions into different fronts with different

ranks. Then, the classified individual group is ignored and

another layer of non-dominated individuals is considered

[29]. In primary sorting, each agent is selected and

checked to see whether or not it meets the rules given

below with respect to any other agent in the population:

(14)

where, i and j are the agent numbers. After ranking the

whole population, a large fitness value is then assigned to

the individuals in the first non-dominated front with rank

1. To maintain the goal of diversity, the sharing strategy

is applied and the shared fitness of each individual in the

front 1 is obtained. Subsequently, a fitness value being

smaller than the minimum shared fitness value of the pre-

vious front is assigned to the individuals in the next front.

Once again, the sharing strategy is used and the individual

shared fitness values in the second front are obtained. The

procedure continues until the individual shared fitness

values are achieved for all fronts. The sharing function

values (Share (dij)) for all first front agents can be calcu-

lated as:

(15)
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where, p1 is the total number of decision variables, xs is

the value of sth decision variable; i and j are the agent

numbers. The µshare stands for the maximum distance al-

lowed between any two agents to become members of a

niche. In additions, the niche count for the total population

(N) is calculated as follows:

(17)

3. 4. Best compromised solution

After the Pareto-optimal solutions are calculated then a

suitable decision maker is needed to choose one best com-

promised solution with respect to a specific preference for

different applications. Hence, the fuzzy set mechanism as

shown in Fig. 7 is use to resolve this problem. Here, a lin-

ear membership function ui is defined for each of the ob-

jective functions Fi:

(18)

where, Fimin and Fimax are the minimum and the maxi-

mum values of the objective functions, respectively. It is

clear that this membership function indicates the achieve-

ment degree of the objective functions. The membership

function can be normalized for each non-dominated solu-

tion k:

(19)

where, O and S are the number of objective functions and

non-dominated solutions, respectively. The solution with

the maximum value of uk will be selected as the best com-

promised solution. The proposed CGSA convergence

analysis is given in Appendix B.   

Fig. 7. The FCM method used for the selected Pareto set

4. Optimal tuning of the proposed control strategy

The proposed controller design problem is formulated as

a multi objective problem with two conflict objective

functions based on time-domain and frequency-domain.

The frequency-domain objective function allowed some

eigenvalues to be shifted to the left-hand side of the ver-

tical line in the complex plane. The time-domain objective

function dictates power system to control the overshot and

undershot responded to output frequency in least values.

These objective functions are given by:

(20)

(21)

where, NP, tsim, λ and ζ are the number of operating con-

ditions, the time of simulation¸ the ith eigenvalue of the

system at an operating point and the desired minimum

damping, respectively. Here, α and β are sets with con-

stant values 0.56 and 0.085, respectively. The optimal tun-

ing parameters problem can be expressed by:

(22)

The range [0-20] is typically assumed for KP, KI and KD.

Moreover, in the proposed model, each agent is formed

to indicate the membership functions (MFs) of the fuzzy

logic controller’s inputs and outputs. In other words, the

fuzzy P-PID controller is a fuzzy inference model that

maps the given inputs in fuzzy variables subjected to

fuzzy membership function. Assuming a priori as the most

appropriate fuzzy set covering the domains of quantitative

attributes the fuzzy association of MFs mining is difficult.

It is usually impractical for experts to represent such sets

and finding the most appropriate fuzzy MFs sets. Existing

clustering-based automated methods are not of interest

because they do not consider the optimization of the dis-

covered membership functions; therefore, the tuning of

multi-scheme MFs with n inputs has received a consider-

able attention and is presented by m1, m2,.., mn. In this

regard, some assumptions are considered and scheduled

as follow:

i) All MFs are defined as triangular partitions with

seven segments from -1 to 1. Zero is the central

membership function centered at zero.

ii) Scaling factors of input/output are optimized by

using the CGSA.

The above assumptions are presented in Fig 8.
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The combination between optimization of the proposed

controller is as follow:

i) The variables are the standard deviation and mean

values of each fuzzy MFs.

ii) These variables act as solutions and search for the

global best fitness.

iii) It initiates with an initial set of variables.

iv) After the variables' being tuned by the CGSA, these

variables will be used to check the performance of

the FLC.

v) This process is repeated until the concerned objec-

tive is achieved.

Figure 9 shows the optimization flowchart of the multi

objective CGSA method.

5. Simulation Results 

The performance of the proposed fuzzy P-PID controller

based on the modified gravitational search algorithm is

validated for a MG system with different types of re-

sources and storages as shown in Fig. 1. Different operat-

ing conditions are considered for this test system which

listed in Table 1. In order to acquire a better performance,

the agent dimension, population size, G0, and α value are

set with 40, 60, 20 and 100, respectively. It should be

noted that the CGSA algorithm is run for several times
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then the optimal set of the proposed controller is selected.

The optimal values for the fuzzy P-PID controller are

given in Table 2. Also, Fig. 10 shows the MFs form of the

fuzzy P-PID controller tuned by CGSA. Figure 11 shows

the distribution of the Pareto front belonging to the opti-

mization process.

Table 1. Operating Conditions

Table 2. Optimal parameters for fuzzy P-PID controller and

CGSA algorithm

Fig. 10. Optimized MFs for fuzzy logic integrated with the

proposed fuzzy P-PID controller

Fig. 11. Pareto-optimal fronts of the proposed algorithm

According to Fig. 10, the input signals of the fuzzy con-

troller are in the range [-2, +2]. These signals are errors

and the changes of errors. Due to the operating conditions

as given in Table 1, some parameters is increased and de-

creased. At first, we evaluate these parameters effects on

the plant's output to select worst operating conditions in

designing the proposed fuzzy P-PID controller. The ef-

fects of these parameters on the frequency fluctuations are

shown in Fig. 12.

It can be observed that two parameters R and TDEG have

a similar performance when the overshoot is enhanced up

to +40%; they are increased. On the other hand, two pa-

rameters TWTG and (d) TPV have same effects when

they are decreased to -40%. In addition, to demonstrate

the robustness of the proposed control strategy, two per-

formance indices ITAE and FD are defined as follows:

(23)

(24)

where, OverShoot (OS), UnderShoot (US) and settling

time of the MG frequency deviation are considered for

the FD evaluation.

It is worth noting that the lower values of these indices

shows the better response of MG system control in terms

of time-domain characteristics. Parameters aos, aus and

ats are penalty factors to make equal values for OS, US

and Ts, respectively. To the reader easily the fuzzy surface

and fuzzy inference diagrams are shown in Figs. 13 and

14, respectively. Synchronizing these factors make better

comparison based on FD value.  
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Fig. 13. Graphical view of fuzzy surface

To shows the robustness and effectiveness of the proposed

controller, it compared with the following controllers in

different operating conditions:

1. Conventional PID controller

2. Multi-stage fuzzy controller [30] 

Fig. 14. Fuzzy inference diagram

As the first evaluation, the load step ∆PL = 0.1 as an ex-

ternal fault is added to the studied MG as shown in Fig.

2. The responded frequency oscillation is shown in Fig.

15. It can be seen that the overshoot in the equipped sys-

tem with fuzzy P-PID controller is significantly better

than two other methods. Moreover, undershoot in the pro-

posed controller is completely removed and the settling
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Fig. 12. Effects of different parameters on frequency stability between -40% to +40 %, (a) R (b) TDEG (c) TWTG  and (d) TPV,

+40% (Solid), 0% (Dashed) and -40% (Dotted)
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time is decreased from 16 s (best solution for two other

controllers) to 11 s for the fuzzy P-PID controller. 

To show the robustness of the proposed controller under

different sever operating conditions; Fig. 16 presents the

frequency response in MG under the load step 0.1 and

delay block. It can be seen that the performance of the

proposed controller is better than other methods. 

It can be concluded from Figs. 14 and 16 that the pro-

posed controller in each condition has a robust perform-

ance because the compared values of indices OS, US and

Ts are close together. In order to show the accepted per-

formance of the proposed algorithm, its results of are

compared with PI and multi-stage fuzzy controllers under

multi-step loadings as shown in Fig. 17 and its frequency

response is shown in Fig. 18.

Figure 20 shows the frequency response of the MG under

sever loading conditions consisting of random load power

changes as shown in Fig. 19 with increasing the parame-

ters R and TDEG to +40% of the nominal values and de-

 
0 5 10 15 20 25 30

-5

0

5

10
x 10 -3

Time (Sec)

Fr
eq

ue
nc

y 
Re

sp
on

se

 

Fig. 15. Frequency response of the microgrid with the load

step 0.1 without delay, Fuzzy P-PID (Solid), Multi stage

(Dashed) and PID (Dotted)
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Fig. 16. Frequency response of microgrid with the load step

0.1 with delay, Fuzzy P-PID (Solid), Multi-stage (dashed) and

PID (Dotted)
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Fig. 18 . Frequency response of the microgrid to load step changes in the interval 240 s, Fuzzy P-PID (Solid), Multi stage (dashed)
and PID (Dotted)
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creasing parameter TWTG and TPV to -40% of the nom-

inal values. This case can be considered as the worst op-

erating condition observed in the literature. In fact,

successful performance under these conditions grantees

the good performance of the proposed fuzzy P-PID con-

troller in the real-time system. 

To demonstrate the MG stability by random wind power

input, assume that the wind input is varied as shown in

Fig. 21. The system frequency response is shown in Fig.

22.

It can be seen from these figures that the frequency devi-

ations of the MG are greatly reduced by the proposed

fuzzy P-PID controller in terms of overshoot, undershoot

and settling time. In other words, the proposed control

strategy has a good and rather quick performance in
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Fig. 19. Random load power change
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Fig. 21. Random wind power input

 
0 50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5

Time (Sec)

Fr
eq

ue
nc

y 
re

sp
on

se
 

 

80 85 90
-0.4

-0.2

0

 

Fig. 20. System frequency deviation below 40% TWTG and TPV decreasing, 40%  R and TDEG increasing and random load power

change, Fuzzy P-PID (Solid), Multi-stage (dashed) and PID (Dotted)
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damping the frequency oscillations. Moreover, the numer-

ical results for different cases are shown in Figs. 23 and

24. It is worth mentioning that the lower values of these

indices shows better system response in terms of time do-

main characteristics. Therefore, it is clear that the per-

formance of the MG equipped with the fuzzy P-PID

controller is better than the conventional PID and multi

stage fuzzy controllers.

In order to evaluate the robustness of the proposed con-

troller, it is assumed that the solar irradiation is changed

as shown in Fig. 25. Moreover, like sever operating con-

ditions, the wind speed and load disturbance are also re-

garded as shown in Fig 25. In this case, the time-domain

simulation result is depicted in Fig. 26. The value of ∆f

gradually returns to zero due to linear increases of Φ and

PPV. It can be concluded that longer time constant in the

studied system can filter out large fluctuations caused by

the inherent random solar-irradiation variations. However,

longer time delay has a detrimental effect on the control-

ling performance on the studied system.
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Fig. 25. Variation of solar irradiation, wind speed and load step disturbance
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6. Conclusions

This paper presents a robust design of the proposed and

adaptive fuzzy P-PID controller for a microgrid system

with different types of uncertainties (to convert this model

to a practical microgrid) and power units (PV, wind, diesel

and etc) in order to enhance the frequency deviation

damping caused by MG performance under unexpected

conditions. Unlike the conventional controller such as

PID, the optimal tuning of fuzzy membership functions

and rules is very essential for improving control system

performance since a non-optimal set of membership func-

tions and rules may lead to sever instability in a microgrid

system. Hence, a multi-objective CGSA algorithm has

been used to optimally tune the fuzzy set variables in the

proposed fuzzy controller. Based on two conflicted objec-

tive functions in time and frequency domains, the pro-

posed design problem is converted to a multi objective

optimization problem over a wide range of loading con-

ditions. According to the results obtained from the pro-

posed algorithm, it can be said that it is an appropriate

approach to improve the frequency deviation. Moreover,

extensive simulation studies show that the proposed con-

troller provides the desired closed loop performance over

a wide range of operating conditions. The findings of this

study contribute the researchers to find out the optimal

tuning for frequency controller on microgrids. It is also a

contribution to the existing knowledge on microgrids ac-

cording to four following reasons:

1. An improved fuzzy P-PID controller is investigated for

damping the frequency oscillations of microgrid.

2. The efficiency of the CGSA algorithm in comparison

with other methods is proved.

3. The CGSA algorithm improved the fuzzy P-PID con-

troller design efforts for frequency oscillations in micro-

grids. 

4. Evaluations of the proposed controller effectiveness

under different types of operating conditions such as

changes in solar irradiation, wind speed, load step and mi-

crogrid uncertainties are indicative of its appropriate per-

formance.

Appendix A: The microgrid data 

All microgrid data are shown in Table 3.

Table 3. Microgrid system Data 
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Fig. 26. System frequency deviations for random solar irradiation, wind speed, step load and +40 uncertainties, Fuzzy P-PID (Solid),

Multi-stage (Dashed) and PID (Dotted)

Value Parameters Value Parameters 
1.5 Kae 3.0 R(Hz/pu) 
0.5Tae (s)0.012D(Hz/pu)
1.1 Kfc 0.1667 2H(pu s) 
4.0Tfc (s)1.3Kdeg 
1.8 Kpv 2.0 Tdeg (s) 
1.0 Tpv (s) 0.3 Tt (s) 
-1.1 Kfess 0.3 Tgi (s) 
0.1 Tfess (s) 1.0 Kwtg 
-1.3 Kbess 1.5 Twtg (s) 
0.1 Tbess (s) 0.6 Ka 
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Appendix B: Algorithm convergence analysis

In this section, the exploitation and exploration of the pro-

posed CGSA algorithm and how it performs better than

the classical GSA by testing Langermann's function [31]

with two variables of X1 and X2 known as a non-convex

problem are presented. Note that this function has many

local solutions different from global solutions identified

by the smooth plate. To the convenience of the readers, a

3-D view of this function is shown in Fig. 27 and the

mathematical equation is presented below: 

Figure 28 shows the contour plot of Eq. (25) dealing with

the movement of the population in the search process. It

can be seen that all population in the proposed algorithm

are focused on the global solution in last iteration but the

GSA has some violations. According to this analysis, the

standard deviations of CGSA and GSA are about 0.002

and 0.035, respectively
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